
 1 

Beat The Bookmaker:  
Identifying Whether the Use of Machine 

Learning Models Can Accurately Predict NFL 
Scores and Make Better Bets 

 
 
 
 

Submitted for the Degree of Master of Science in 
 

Data Science and Analytics 
 

 
 
 
 

 
 

Department of Computer Science 
Royal Holloway University of London 

Egham, Surrey TW20 0EX, UK 
 

August 29th, 2024 
 
 



 2 

Declaration 
This report has been prepared on the basis of my own work.  Where other 
published and unpublished source materials have been used, these have 
been acknowledged.  
 
Word Count: 11,729 
 
Student Name: Shreyan Nageswaran 
 
 



 3 

Acknowledgements 

With this project marking the conclusion of my academic 
career at Royal Holloway, University of London, there are 
several people I would like to thank for their assistance 
throughout this journey. First being my project supervisor for 
his guidance throughout the duration of this project. Next 
being my family for their continuous support and confidence 
in me, and for being an example of what it means to 
accomplish anything with hard work and dedication.  

 



 4 

Abstract 

The use of Machine Learning models to predict the scores of 
Association Football matches have proven to be both effective 
and well-known in the realm of predictive analysis for sports. 
However, the translation of these various models between 
sports, such as American Football, is an open frontier to 
experiment. As a result, this project aims to test the accuracy 
of Machine Learning models, such as a Poisson Distribution as 
well as a Decision Tree Regression Model, in predicting 
outcomes for both Regular Season and Playoff matches in the 
National Football League. This project also aims to further test 
the capabilities of Machine Learning models by creating 
model-derived betting probabilities for each match and 
comparing them against odds from leading bookmakers. 



 5 

Contents 

1 Introduction ............................................................................... 1 

1.1 Motivation ................................................................................ 1 

1.2 Project Objective and Procedure ........................................... 1 

1.3 Betting Industry ...................................................................... 2 

2 Background Research .............................................................. 3 

2.1 Poisson Model ......................................................................... 3 

2.2 Dixon Coles .............................................................................. 4 

2.3 Decision Tree Regressor ......................................................... 5 

2.4 American Football and Association Football Differences . 7 

3 Data Collection ......................................................................... 9 

3.1 Project Data .............................................................................. 9 

3.2 Data Scraping and Dataset Construction ............................ 9 

4 Poisson Experiment ............................................................... 10 

4.1 Overview ................................................................................ 10 

4.2 Variation #1: Mathematically Derived Parameters .......... 10 

4.3 Game Predictions .................................................................. 15 

4.3.1 2018 and 2019 Season Experiments ................................. 18 

4.4 Variation #2: Optimized Parameters .................................. 19 

4.4.1 Code References ................................................................. 19 

4.4.2 Implementation .................................................................. 20 

4.4.3 2018 and 2019 Season Experiments ................................. 22 

4.5 Summary ................................................................................ 23 

4.6 Dixon Coles Inspired Parameter ......................................... 23 

4.6.1 2018 and 2019 Season Experiments ................................. 26 

5 Decision Tree Experiment .................................................... 28 

5.1 Overview ................................................................................ 28 



 6 

5.2 Code References .................................................................... 28 

5.3 Implementation ..................................................................... 28 

5.4 2018 and 2019 Season Experiments .................................... 31 

6 Comparison with Betting Odds ........................................... 32 

6.1 Overview ................................................................................ 32 

6.2 Implementation ..................................................................... 33 

6.3 2018 and 2019 Season Experiments .................................... 35 

6.4 Further Testing ...................................................................... 35 

7 Conclusion ............................................................................... 38 

7.1 Self Assessment ..................................................................... 41 

 Bibliography ............................................................................ 43 

 Coding References ................................................................. 47 

 How to Download and Use this Project ............................. 49 
 
 
   
 
 
 



 1 

 

1 Introduction 

1.1 Motivation 
The predictive power of machine learning models has captivated the 
attention of Association Football fans, leading to the development of a 
multitude of experiments on the sport. The results of these experiments 
further appeal to followers of the sport who seek to “take a scientific, 
mathematical approach to betting” [1]. As a result, Association Football 
has become synonymous with the use of a Poisson distribution model to 
both predict match outcomes and place more accurate bets.  

 
This phenomenon caused me to question the validity of these experiments, 
as it seems unlikely that an algorithm can be used to predict an outcome 
controlled by humans. After all, athletes are the ones who dictate the result 
of their respective sporting match. Furthermore, regarding the betting 
approaches, utilizing models to enhance betting returns could greatly 
impact an individual's financial situation. Therefore, to gauge the accuracy 
of these models, an attempt was made to replicate these experiments. 
However, seeing that there are numerous existing implementations of 
these experiments for Association Football, it seemed enticing to try and 
recreate these experiments on a different sport such as American Football.  

 
The motivation to work on this project also stems from the desire to 
improve on skills that will be useful in industry. Working on this project 
will allow me to accumulate more experience in the realm of 
programming, machine learning, and research which will greatly help me 
in future career opportunities.  

1.2 Project Objective and Procedure 
The objective of this project is to see if the machine learning algorithms, 
used in Association Football, can be used to both accurately predict 
American Football scores and help bettors place more accurate bets. 
Furthermore, this project also aims to see if other machine learning 
models, outside of the ones used for Association Football, can be used to 
generate more accurate predictions. This experiment will be conducted by 
first designing a Poisson Distribution model utilizing explicit calculations 
for each parameter. After an evaluation of the results, the next step will be 
a comparison with a derivation of the popularly used methodology for 
predicting Association Football fixtures. Then, the experiment will 



 2 

consider additional parameters used in Association Football procedures 
and look to utilize them in the context of American Football. Once the 
Poisson Distribution model experiment has concluded, the next step is to 
evaluate the performance of an entirely different machine learning model, 
a Decision Tree Regressor. From there, the results presented from the 
variations of the Poisson model as well as the Decision Tree Regressor will 
serve as an indicator for how well machine learning models can predict 
American Football scores. However, the experiment continues with an 
analysis of betting odds. The odds from the dataset are converted into 
predicted probabilities, which can then be used to calculate how accurate 
odds are in predicting the outcome of a game. This will allow for a direct 
comparison between how well the model did in its predictions compared 
to the odds as well as either assert or refute the idea that machine learning 
models can be used to make more accurate bets. 

1.3 Betting Industry 
As betting odds are a focal point of this project, it is important to 
understand the industry and its significance. Sports betting has a long 
history dating back to the Industrial Revolution [2]. Since then, it has 
become increasingly popular and has had a large impact on several 
economies. For example, sports betting, among others in the American 
Gaming Association, “contributed $328.6 billion to the U.S. economy in 
2023” [3]. An economic contribution of that magnitude indicates that many 
people partake in sports betting and place high value bets. In fact, in that 
same year, “Americans legally wagered $120 billion just on sports betting” 
[3].  

 
Despite the sports betting industry having beneficial effects on the 
economy and being a source of entertainment, many people lose 
significant amounts of money due to inaccurate bets being placed. Since 
2018, Americans have surrendered approximately $240 billion in sports 
betting [4]. This shows the significant toll that sports betting can have on 
an individual’s finances, and, as a result, it is unwise to promote the usage 
of a machine learning algorithm to make bets if it is not proven to be 
accurate.  

  
This project does not encourage gambling, however, it simply aims to see 
if machine learning models can also be used to make more accurate bets, as 
models are being used in that capacity for Association Football.  

 
 
 



 3 

2 Background Research 

2.1 Poisson Model 
The Poisson Distribution model is the primary machine learning model 
that will be implemented and researched during this project. A Poisson 
Distribution model is described as a “discrete probability distribution” [5], 
which means that it can be used to identify the “probabilities of occurrence 
of different possible outcomes in an experiment” [5]. In comparison to 
other machine learning algorithms, a Poisson Distribution model is the 
ideal choice to generate predictions for a given event. One of the main 
advantages of utilizing a Poisson Distribution is its simplicity. Based on its 
equation, the Poisson Distribution requires few parameters. 
 

 
          

 

Figure 1: The Poisson Distribution Equation 

*Equation sourced from [5]* 

 
To fully comprehend the mechanics of the model, it is essential to 
understand the significance of each variable in the equation. The equation 
takes in two variables, k and ƛ. P(k events in interval) is “the probability of 
observing k events in a given interval” [5]. Based on this interpretation, it 
can be inferred that k can be changed based on the desired number of 
occurrences. The ƛ denotes the “event rate” [5] which is the “expected 
number of possible occurrences” [5]. These variables, coupled with “e”, the 
Euler’s number [5], are used to calculate the P(k events in interval).  

 
Both variables, k and ƛ, can be easily applied in a variety of scenarios and 
that is what makes the Poisson Distribution model appealing in the realm 
of Association Football. In the context of Association Football, the k and ƛ 
variables correspond to values that influence the predicted score of a 
match. Data Scientist, David Sheehan, explicitly outlines how the ƛ 
parameter can be mapped to the expected number of goals scored by a 
team [6]. In this interpretation of the ƛ parameter, Sheehan also illustrates 
how to calculate it in the context of Association Football.  
 
 
 



 4 

 
 
 

    
 
 
 

Figure 2: The Lambda Equation 
 

        *Image sourced from [6]* 
 

In the equation above, Sheehan utilizes two additional parameters to 
calculate the ƛ. The first parameter, a, represents the attack strength of the 
first team [6], the second parameter, b, represents the defense strength of 
the second team [6], and the third parameter, y, represents the home field 
advantage [6]. These three parameters combined make up the ƛ. However, 
the most important takeaway from this is how the lambda can be adjusted 
depending on the teams in each matchup. These additional parameters 
ensure that the ƛ is tailored to each team’s performance in a given match.  

 
In this context, k can be associated with a scoring event [7]. To visualize 
what these parameters would look like in an Association Football setting, a 
variation of the scenario depicted by Elena Petrova, in her article on 
CareerFoundry [5], would be most helpful. In her article, Petrova provides 
an example in which she articulates the values of the ƛ and k, where she 
states that, given the average number of internet failures, what is the 
probability of observing three failures [5]? In her example, ƛ represents the 
average number of internet failures and k represents three failures [5]. 
Considering what is now known regarding the interpretation of these 
parameters for Association Football, a similar situation can be created. For 
example, given that Arsenal averages three goals per game, what is the 
probability of them scoring four goals in their match against Chelsea? In 
this context, the ƛ represents the average goals scored by Arsenal per game 
and the k represents four goals. This provides an overview as to how these 
parameters are used in the context of Association Football.  

2.2 Dixon Coles 
The Dixon Coles Parameter is a unique addition to the Poisson 
Distribution model to further enhance its accuracy. In an effort to improve 
on the Poisson Model, Mark Dixon and Stuart Coles identified two cases 
where the model was lacking: the accuracy when predicting low scoring 
matches and the equal weightage of both recent and older matches [6].  



 5 

 
To rectify the first issue, Dixon and Coles sought to implement a 
parameter that “applies a correction” [6] on the model, which is referred to 
as the “rho” parameter [6]. Below is the set of equations in which the rho 
parameter is calculated.  

 
 

 

 

 

 

 

      Figure 3: Set of equations used to calculate rho 
 

    *Image sourced from [6]* 
  

There are numerous ways in which rho can be calculated depending on 
the low scoring match that occurs. From this set of equations, it is 
determined that only scores ranging from 0 to 1, however, are considered 
for the usage of this parameter. This implies that scores above this range 
are not considered to be low scoring matches.  

 
Regarding the second issue, one of the ways to fix the equal weightage of 
both recent and older matches is to “only consider matches within some 
predefined period” [6]. However, as outlined in later sections, this concept 
is insignificant in the context of American Football.  

2.3 Decision Tree Regressor 
Decision Tree Regressors are one of the most fundamental machine 
learning algorithms. A Decision Tree Regressor is an algorithm that 
“constructs a tree-like model to predict continuous numerical values” [8], 
which makes it applicable in the context of predicting American Football 
scores. When analysing the workflow of a Decision Tree, we can see the 
intricate steps taken in order to generate predictions.  

 
 
 

 



 6 

   

    

 

 

 

 

 

 

 

          Figure 4: Diagram of Decision Tree Process 
 

             *Image inspired from [9]* 
 

The diagram above illustrates the Decision Tree process from the start to 
the completion of the algorithm. The Decision Tree starts at the root note, 
which “represents the whole data points” [9]. From there, the tree splits 
into various decision nodes. Each decision node expresses a decision that 
needs to be made [10]. Branching from the decision nodes, are terminal 
nodes, also referred to as leaf nodes [9], which represent the outcome of 
those decisions [10].  

 
There are several important factors to consider in regard to Decision Trees. 
One of the most important concepts in the Decision Tree Process is the 
splitting of nodes. A Decision Tree diverges from the root node, and 
further splitting occurs on other nodes, based on a “variable at each step 
that best splits the set of items” [9]. Additionally, another significant 
concept to note from this procedure is the fact that this process is not 
linear, meaning that decision nodes can also be further split into other 
decision nodes before reaching a terminal node.  

 
In the context of this project, a Decision Tree is being used as an additional 
algorithm to verify the results generated from the Poisson Distribution 
model. Though it is unlikely that both models will generate identical 
results, utilizing a Decision Tree Regressor will provide insight as to 
whether other machine learning models, outside of the Poisson 
Distribution model, can be used to predict sports scores. When searching 
for an additional model to cross reference with, there were certainly other 



 7 

models that were appealing to use in this project such as a Random Forest. 
A Random Forest is similar to a Decision Tree, in that it is also a “tree-
based machine learning algorithm” [11], however, it utilizes the power and 
capabilities of more than one Decision Tree in order to generate 
predictions [11].  

 

 

  Figure 5: Diagram of Random Forest Procedure 
 

      *Image sourced from [11]* 
 

A Random Forest model is able to generate its result through an 
accumulation of outputs from a Decision Tree. This calls into question 
whether a Random Forest would be a better suited algorithm for this 
project compared to using a single Decision Tree. However, the main 
advantage in using a single Decision Tree is that it is faster as opposed to a 
Random Forest [11]. This is crucial as, when utilizing large datasets 
consisting of historical data, a Decision Tree will run quicker whereas a 
Random Forest algorithm could take significantly more time.  

2.4 American Football and Association Football 
Differences 

Despite their identical names, American Football and Association Football 
are very different sports and, to successfully create a derivation of the 
Association Football inspired Poisson Model for American Football, it is 



 8 

imperative to discern the differences between them. The most notable 
difference between the sports is in how they are scored. In Association 
Football, the procedure is straightforward. The scoring metric in 
Association Football is a goal, which occurs “when the entire ball crosses 
the goal line between the goalposts and under the crossbar” [12]. The team 
that scores the most number of goals, in an Association Football match, is 
declared the winner [12].  

 
The scoring procedure in American Football, however, is more complex. In 
contrast to Association Football, there are numerous ways in which a team 
can score points. The most significant scoring metric in American Football 
is a touchdown. In American Football, a touchdown occurs when a player 
in possession of the ball crosses the opponents’ goal line [13]. When this 
happens, the team that scored the touchdown is rewarded with 6 points 
[13]. In addition to this, after scoring a touchdown, a team can elect to try 
for either a single point or an additional 2 points [13]. This means that a 
team can score from 6 to 8 points as a result of scoring a touchdown. 
Furthermore, if a team is unable to score a touchdown but has strong field 
position, they can opt to kick a field goal which would result in a score of 3 
points [13]. Though these scoring metrics are predominantly scored by a 
team’s offense, there are ways in which a defense can score points for their 
team as well. In the event that a defense pushes the other team’s offense 
into their own goal, this would result in a score of 2 points and is called a 
safety [13]. At the end of the match, like Association Football, the team that 
accumulated the higher score is declared the winner.  

 
Given that goals in Association Football only account for a single point, 
this results in significantly lower scoring matches in comparison to 
American Football. After an analysis of approximately 294,970 matches, a 
study found that the most common scoreline in Association Football was 
1-1, which implies that only two goals were scored in the entirety of the 
match [14]. In contrast, for American Football, scores are significantly 
greater due to the variety of ways in which a team can score points. In fact, 
a similar study for American Football found that the most common 
scoreline was 20-17 [15], implying that multiple scoring plays occurred for 
both teams throughout the match. This difference plays an integral role in 
the construction of the Poisson Model, as well as the varying parameters to 
consider, as the model must be able to accurately predict notably larger 
scores than those that it would traditionally see in the case of Association 
Football. As a result, certain parameters that were used to predict 
Association Football scores were unable to be fully utilized in this 
experiment such as the Dixon Coles term. Additionally, the stark 
differences in scores directly affected how the predicted scores were 
calculated compared to Association Football experiments, which will be 
discussed in the upcoming sections. 



 9 

3 Data Collection 

3.1 Project Data 
For this project, the collection of data was centered around the type of 
information that was needed to be included. With the scope of this project, 
it became apparent that the most essential component of data would be 
historical results of American Football scores, more specifically, National 
Football League scores from previous years’ regular season and playoffs. 
Acquiring this data would allow for comparisons of model-generated 
predictions to real-world predictions and aid in the computations for the 
various model parameters. Furthermore, to compare model-generated win 
probabilities against betting odds, it was imperative to also include a form 
of historical betting odds for each game into the datasets.  

3.2 Data Scraping and Dataset Construction 
The first step to acquiring the data was to identify a source that contained 
all the components that were necessary for this project. After numerous 
searches, I came across the page, sportsoddshistory.com [16], which 
consisted of both past games in American Football as well as their 
corresponding betting odds, in the form of spreads. With this information, 
I then began manually scraping the data from the webpage into my 
datasets. This allowed me to structure my dataset in a coherent manner. 
The objective was to construct the datasets by having each team’s schedule 
(with their opponents and the score for each match) as well as the betting 
spread for them winning the match. As a result, the datasets consisted of 7 
columns. The first two columns, ‘League’ and ‘Date’, were used to simply 
identify when each match occurred. Though these columns were not used 
in the experiments, it was necessary to include them to ensure that each 
team, and their score, were corresponded to the correct game when 
inputting the data. The next four columns, ‘Team1’, ‘Team2’, ‘T1 Score’, 
and ‘T2 Score’, represented the teams in each match as well as the scores 
for ‘Team1’ and ‘Team2’. The final column in the dataset is ‘T1 Spread’, 
which is the spread odd for the team, in the ‘Team1’ column. It is 
important to note that, in these datasets, the same teams and scores do 
repeat. However, the order changes, meaning that the team in ‘Team1’ gets 
shifted to ‘Team2’, the team in ‘Team2’ get shifted to ‘Team1’, the score in 
‘T1 Score’ moves to ‘T2 Score’, and the score from ‘T2 Score’ moves to ‘T1 
Score’. This is to ensure that the values in the ‘T1 Spread’ column reflect 
the odds for each team in a match. Though this approach may be less 
efficient, it thoroughly guarantees that each team and game is accounted 
for in the dataset.  

 



 10 

4 Poisson Experiment 

4.1 Overview 
The Poisson Experiment was conducted for two full seasons in the 
National Football League, the 2018 and 2019 regular seasons and playoffs, 
and consisted of using two variations of the model. In the first 
implementation, the construction of the model parameters was done 
through mathematical computations, whereas, in the second 
implementation, the model parameters were built through optimization 
techniques. Given that the optimization method is widely used in models 
for Association Football, it is worth seeing which approach will net more 
accurate results. Overall, this experiment not only tests the validity of the 
Poisson Distribution model for American Football, but also evaluates both 
approaches and determines which is more accurate. 

4.2 Variation #1: Mathematically Derived 
Parameters 

The first step in implementing this variation was to construct a training 
and test set. Given the nature of an American Football league season, in 
which there consists of a regular season and a playoffs, it seemed logical to 
assign the regular season scores as the training set and the playoff scores 
as the test set. Once this was completed, the next task was to define the 
parameters that will be used in the model. As mentioned in Section 2, in 
the context of Association Football, the ƛ parameter represents the 
expected number of goals that a team would score in a match and is 
comprised of the attack strength, defense strength, and home field 
advantage [6]. Though, in the context of American Football, not all of these 
fields within the ƛ parameter are useful. Since there are direct correlations 
for attack strength and defense strength in American Football, these fields 
were used.  

 
Even though it has been deduced that the offensive strength and defensive 
strength parameters will be used in this project, that is still not enough to 
accurately estimate ƛ. Prior implementations of the Poisson Model for 
Association Football calculated the expected goals scored (ƛ) by taking e^x 
in which x is a sum of the attack and defense strengths [17]. That approach 
does not work within the framework of American Football due to the fact 
that, as outlined in Section 2, the scoring for both these sports is different. 
As a result, that approach will result in an expected score that is not 
feasible for an American Football match. However, another way to 
calculate the expected score, as outlined in the article “How to calculate 
Poisson distribution for football betting” on help.smartmarkets.com, is 



 11 

through multiplying both strengths together along with the average points 
scored by a team [18]. The article outlines that, the calculation of the 
expected score for the home team, for example, is “Home team attack 
strength * away team defense strength * average number of home goals” 
[18]. Similarly, an extraction of this equation can be applied to American 
Football, resulting in the equation:  
Expected Points for Team 1 = Team 1 Offensive Strength * Team 2 
Defensive Strength * Team 1 Average Points Scored.  

 
With the framework to calculate the ƛ parameter, the next step was to 
compute the values of the offensive, defensive and average point scored 
metrics. In similar fashion to the ƛ equation, a derivation of equations used 
to calculate the attack and defensive strengths in Association Football can 
be used to build the offensive and defensive strength parameters in this 
experiment. In Association Football, the attack strength for a home team 
can be calculated as “home team’s average goals per home game / average 
home league goals per game” [18]. This can be translated into the equation 
to construct the offensive strength parameter in this model as: Team 1 
Offensive Strength = Team 1 Average Points Scored per game / League 
Average Points Scored per game. For defense strength, the aforementioned 
article defined defensive strength for a home team as “Home team’s 
average goals conceded per home game / average home league goals per 
game” [18]. In the context of this project, this can be conveyed as: Team 1 
Defensive Strength = Team 1 Average Points Allowed per game / League 
Average Points Allowed. Below is the pseudocode of the implementation 
for the offensive and defensive strength parameters in the project. 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 6: Pseudocode for the buildInitialOffParams method 

 
 
 



 12 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Pseudocode for the buildInitialDefParams method 
 
 

It was imperative to first initialize the parameter for each team by setting it 
to a temporary placeholder, which is 0. This ensured that a dictionary was 
constructed for both offensive and defensive parameters with pre-existing 
values inside. Though these functions may seem insignificant, considering 
that the placeholder values will have no effect on the outcome of the 
parameter construction, the primary motivation for creating these 
functions was to build a dictionary, in which keys are team names, so that 
it would be simpler to map the correct parameter to each team.   
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
        Figure 8: Pseudocode for the calculateOffensiveMetrics method 
 



 13 

 
 
 
 
 
 
 
 
 
 
 

 
         Figure 9: Pseudocode for the calculateDefensiveMetrics method 

 
 

As defined earlier, in order to construct the parameters, the average points 
scored and allowed for each team must be acquired, which is the objective 
of these functions. With these four methods implemented, the process of 
updating the offensive and defensive parameters can begin. 
 
 
 
 
 
 
 
 
 

 
 

      
 
 
 
 

 
 
 
 
 
 
 
 

 
 Figure 10: Pseudocode for the updateParameters method 



 14 

 
To compute the parameters, the first step was to retrieve the offensive and 
defensive statistics from the methods described earlier. Then, to calculate 
the league average points scored and allowed per game, I iterated through 
the dataset and retrieved the values of points scored by each team. Given 
that the total points scored in the league is equivalent to the total points 
allowed in the league, it was only necessary to retrieve the values in one of 
the score columns. The summation of all values in that column represents 
both the total number of points scored and the total number of points 
allowed in the league. Furthermore, to find the average, a similar 
calculation was needed to retrieve the total number of games played by all 
teams in the league. After deriving both these values, the league average 
points scored and allowed metric was calculated by dividing the total 
number of points in the league by the total number of games.  

 
With all the metrics, average points scored for each team, average points 
allowed for each team, and league average points scored and allowed, 
there was sufficient information to calculate our offensive and defensive 
strength parameters using the equations defined earlier. 

 
 

           
Figure 11: Example of Calculated Parameters for the 2018 season 

Team Offensive Parameter Defensive Parameter 

Buffalo Bills 0.7202141900937081 1.001338688085676 

Baltimore Ravens 1.0414993306559572 0.7684069611780455 

Cincinnati Bengals 0.9852744310575636 1.2182061579651942 

Detroit Lions 0.8674698795180723 0.963855421686747 

Minnesota Vikings 0.963855421686747 0.9129852744310576 

New Orleans Saints 1.3493975903614457 0.9451137884872824 

New York Giants 0.9879518072289156 1.1030789825970548 

Team Offensive Parameter Defensive Parameter 

Buffalo Bills 0.8602739726027397 0.7095890410958904 

Baltimore Ravens 1.4547945205479451 0.7726027397260274 



 15 

 

 
Figure 12: Example of Calculated Parameters for the 2019 season 

 
The parameters above are examples of the calculations for both the 2018 
and 2019 datasets. A larger offensive strength indicates that the team had a 
better than average offense. For example, in 2019, the New Orleans Saints 
offensive strength was approximately 1.25. This implies that the Saints had 
an above average offense whereas a team such as the Detroit Lions, who 
finished with an offensive strength of approximately 0.93, had a below 
average offense. In the case of the defense strengths, the opposite applies. 
The lower the defense strength is, the better the actual defense is. For 
example, in 2018, the Baltimore Ravens had a defense strength of 
approximately 0.76, which implies that they were an elite defense that 
season. On the contrary, the Atlanta Falcons, in that same season, had a 
defense rating of approximately 1.13, which implies that they were worse 
than league average. 

4.3 Game Predictions 
With the parameters established, we can now begin predicting the scores 
for each game. To utilize these parameters, I created a method used to 
predict the outcome of each game. 

 
 
    

 

 

 

 

 

Cincinnati Bengals 0.7643835616438356 1.1506849315068493 

Detroit Lions 0.9342465753424658 1.158904109589041 

Minnesota Vikings 1.115068493150685 0.8301369863013699 

New Orleans Saints 1.2547945205479452 0.9342465753424658 

New York Giants 0.9342465753424658 1.2356164383561643 



 16 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13: Pseudocode for the gamePrediction method 
 

                     *The lines of code up until ‘Plotting Code’ are inspired by [17]* 
 

Similarly to how predicting a match is done for Association Football 
implementations, the first step was to retrieve all the parameters defined 
beforehand and use them to calculate the expected points for both teams in 
the match [17]. From there, we can utilize the Poisson Distribution model 
in order to retrieve the probabilities of scoring a certain number of points 
[17]. In these initial lines of code, one of the main differences is the usage 
of the game_points variable. In the implementations for Association 
Football, the writers utilize a max_goals variable and pass that into the 
Poisson Distribution model to get the probabilities of scoring each number 
of goals until it reaches the max_goals [17]. However, since American 
Football scoring is significantly different, we can modify this variable to be 



 17 

maxTDs (which represents maximum touchdowns) and, before passing it 
into the model, multiply it by six to represent the maximum number of 
points scored in the game.  

 
Given that the Poisson Distribution model returns a list of probabilities 
with the same size as the game_points variable, the predicted score is the 
score that returns the highest probability, calculated by iterating through 
the list and identifying the index in which the probability is the greatest. In 
this case, the index refers to the predicted score. The next step was to 
calculate the overall predicted win probability for each team. In the case of 
Team 1, for example, if Team 1 was projected to score x points and Team 2 
was projected y points, and x > y, then the probabilities of both those 
events occurring would be multiplied together. This results in the 
probability of Team 1 winning the match with that exact score. The overall 
win probability for each team is calculated by summing the probabilities, 
in which they are predicted to score more points than the opponent, 
together. 

 
 

            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 14: Visual representation of a game prediction 
 



 18 

Now that the model is able to generate a prediction for each sporting 
match, the next step was to see how accurate its predictions were in 
comparison to the real results from that year. This could be gauged 
through the calculation of an accuracy rate variable. The accuracy rate 
variable was computed by counting the occurrences in which the predicted 
winner was the actual winner and then dividing by the total number of 
predictions.  
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  
 
 
 

 
 
 
                                  Figure 15: Pseudocode for evaluateModel method 
 

4.3.1 2018 and 2019 Season Experiments 

For the 2018 Regular Season, which is denoted as the training set, the 
model was 67.97% accurate in identifying the winner in each match. When 
using the same training parameters on the test set, which is the 2018 
Playoffs, the model returned an accuracy rate of 63.64%.  

 
For the 2019 Regular Season, the model generated a 67.77% accuracy rate. 
However, when using the same training parameters, the model 



 19 

surprisingly predicted 90.91% of games correctly in the corresponding test 
set, which is the 2019 Playoffs.  

 
The biggest surprise when analysing this data is how much higher the 
accuracy rate is for the 2019 test set as opposed to the other training sets or 
even the 2018 test set. Though this may seem inconsistent, there are a few 
reasons as to why this could have occurred. The main reason is due to the 
test set size. In the dataset containing the scores for the regular season, 
there are approximately 512 rows of data. However, the dataset containing 
the playoff scores only contains about 22 rows of data. This means that any 
incorrect predictions on the test set contribute more to a decrease in 
accuracy rate in comparison to incorrect predictions on the training set. 
This is likely the cause for the decrease in accuracy rate from the training 
set in 2018 to its corresponding test set. Conversely, a smaller test set gives 
the model less opportunities to make incorrect predictions, which explains 
why the test set accuracy rate in 2019 was substantially greater than the 
rates for the training set.  

 
Overall, given that the accuracy rates returned by the model in this 
implementation are consistently greater than 60%, this proves that, with 
mathematically derived parameters, a Poisson Distribution Model can be 
used to accurately predict American Football games in most cases.  

4.4 Variation #2: Optimized Parameters 
The second version of this experiment will be performed by utilizing 
optimization techniques in order to calculate the offensive and defensive 
strength parameters for the model. Since, in this approach the parameters 
are not being calculated based on the prior equations, as defined earlier, 
functions such as buildInitialOffParams, buildInitialDefParams, 
calculateDefensiveMetrics, and updateParameters are not needed in this 
implementation. However, calculateOffensiveMetrics still needs to be 
included due to the fact that the expected number of points scored will be 
determined based on a product of the offensive and defensive strengths 
generated along with the average points scored by a team. With that, along 
with our training and test sets being defined in the same manner as they 
were in the previous variation, the optimization process can commence.  

4.4.1 Code References 

The functions used for optimizing the parameters: log_likelihood, fit_poisson, 
and fit, are sourced from the article, “Predicting Football Results With The 
Poisson Distribution”, on pena.lt/y [17], with minor adjustments in order 
to utilize those functions for American Football. Since I wanted to draw a 
comparison between the mathematically derived parameters approach and 
the optimized parameter approach, I looked to replicate the optimization 



 20 

procedure in order to ensure that this variation of the model would be 
represented accurately in the comparison. 
 

4.4.2 Implementation 

As outlined in the article, in experiments like this, the typical approach to 
optimization is to utilize Maximum Likelihood Estimation [17], which 
means that “the parameters are chosen to maximize the likelihood that the 
assumed model results in the observed data” [19]. However, since 
likelihood calculations involve extensive computations with small 
numbers [17], that may not be the most optimal method. Instead, the better 
choice would be to “minimize the negative of the log-likelihood” [17].  

 
 
 
    

 

 

 

 
 
 

 

 
Figure 16: Pseudocode log-likelihood method 

     
 *Inspired by [17]* 

 
Similar to how it is used in the Association Football implementation article 
[17], this log-likelihood method calculates the expected scores as well as 
the log-likelihoods for each team and returns the negative sum of both 
team’s log-likelihoods.  

 
The next stage of this procedure is to create our fit_poisson function to 
generate the values for the optimized parameter.  
 
 
 
 



 21 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 17: Pseudocode for fit_poisson and fit functions 

      
  *Inspired by [17]* 

 
Again, similar to how it is implemented in the Association Football 
implementation [17], the fit_poisson function initially starts by generating a 
set of random parameters for both offensive and defensive strength. Then, 
the fit function, which is written inside of the fit_poisson function, is used to 
iterate through our dataset and add up all the log-likelihoods for each 
game [17]. The final step is to then utilize the minimize function, on the fit 
function with the random parameters defined, to generate the optimized 
parameters for the model’s use, which will then be stored in a dictionary 
[17]. 

 



 22 

The parameters generated from these functions are significantly different 
in comparison to the parameters derived in the first variation of the model. 
For example, the offensive strength for the Buffalo Bills, in 2018, was 
calculated to be approximately 9.13. An offensive strength of this 
magnitude would indicate that the Bills had an exceptional offense that 
season. This value differs significantly from the offensive parameter 
computed for them in the previous implementation, which was 
approximately 0.72, that indicated that their offense was worse than league 
average. In addition to this, other teams have significantly different 
parameters than in the previous experiment. These changes in parameters 
should definitely impact the overall performance of the model. Once the 
parameters are created, we can utilize the same gamePrediction and 
evaluateModel functions to make our predictions and calculate the accuracy 
rate. 

4.4.3 2018 and 2019 Season Experiments 

For the 2018 training set, which is the Regular Season, the model 
accurately predicted the winner in 50.39% of games. When analysing the 
2018 playoffs, the model netted an accuracy rate of 59.09%.  

 
For the 2019 training set, the model returned an accuracy rate of 72.46%, 
and, for the 2019 test set, the model generated an accuracy rate of 81.82%. 

  
Though these results may seem rational, if not more or less impressive, in 
comparison to the accuracy rates generated by the first variation of the 
model, there is a clear indication as to why the first variation is more 
consistent as opposed to this one. When looking at the line of code with 
the minimize function (in the second implementation), the parameters that 
get passed into the minimize function are random. Though this may seem 
insignificant, it proves that the model will consistently generate different 
parameters even with the use of the same training set. As a result, there 
may be significant fluctuations in predicted scores and accuracy rates the 
more times that this algorithm is run. For example, if the code is run again, 
the parameters generated will be different which, in turn, implies that the 
accuracy rate will change. To verify this, we can run the algorithm again 
and see the variations in results between both cases.  

  
When running the code for the algorithm again, there are immediate 
changes in both the parameters and the overall accuracy rates. Starting 
with parameters, there are major differences compared to the ones 
generated in the initial execution of the code. For example, for the 2018 
datasets, the Buffalo Bills returned an offensive parameter of 0.61. This is 
significantly lower compared to the offensive parameter generated in the 
initial execution of the code, which was approximately 9.13. Furthermore, 
when examining the accuracy rates, it is apparent how the overall rates 



 23 

differ in comparison to the ones generated from the initial execution. The 
model returned accuracy rates of 41.02% and 68.18% on the 2018 training 
and test set. For 2019, the model returned accuracy rates of 58.2% and a 
shockingly low 27.27% on the training and test set.  
 
From the results returned in the second execution of the code, it can be 
concluded that this version of the model will not yield a consistent 
accuracy rate over several executions of the code. Given this revelation, it 
seems illogical to denote this approach as the ‘better approach’ since there 
is no concrete measurement of accuracy that will be consistent throughout 
numerous iterations of the code.  

4.5 Summary 
Overall, both variations of the Poisson Distribution Model do seem to be 
able to accurately predict American Football scores to an extent. However, 
implementing the model with mathematically derived parameters will 
result in more consistent results. 

4.6 Dixon Coles Inspired Parameter 
The Dixon Coles Model has been commonly linked to the Poisson Model 
when predicting Association Football scores. However, for American 
Football, the Dixon Coles model has several shortcomings that prevent it 
from being fully used in this experiment. As mentioned in the earlier 
sections, the Dixon Coles model is used to better approximate predictions 
for low scoring matches in which either zero or one goals are scored [6]. In 
American Football, the scoring system prevents games from having scores 
this low. Even if we consider low scoring games, in American Football, as 
games where both teams scored a single touchdown or less, this approach 
still would not be effective as, through an examination of the 2018 dataset, 
there was only one game in which both teams scored six or less points. In 
addition to this, the second goal of the Dixon Coles model, in which games 
are weighted based on their recency [6], also does not apply in the domain 
of American Football since there are significantly fewer games in a season 
compared to Association Football. In the 2018 National Football League 
season, for example, each team only played 16 games [20]. In an 
Association Football league, such as the Premier League, each team plays 
38 games [21]. As a result, for American Football, every game should be 
weighted equally in predicting a team’s performance given the smaller 
sample size of games.  

 
With the lack of compatibility between American Football and the Dixon 
Coles model, it seems as though the Dixon Coles model is not practical for 
this project. However, it is possible to implement the principles of the 



 24 

Dixon Coles model in another capacity. Considering the primary goal of 
the model, which is to improve accuracy for low scoring games, a 
derivation of the Dixon Coles model can be implemented by identifying 
low scoring games in the context of American Football. We can further 
improve this derivation by also identifying abnormally high scoring games 
so that the new parameter can be used to better approximate both low and 
high scoring games.  

 
Given the guidelines for the new parameter, the next step would be 
incorporating it in the implementation of the Poisson Distribution model. 
Since the Poisson Distribution model with the mathematically computed 
parameters generates consistent accuracy rates, we can integrate the new 
parameter there to clearly see how it impacts the accuracy of the model. 
The first step was to identify any games that were anomalies, meaning 
games where teams either scored an abnormally high or low amount of 
points. This was determined by observing matches in which both teams 
either scored below 7 points, above 49 points, or did not score at all.  

 
 
 
 
 
             

 
 
 
 
 
 
 
 
 
      Figure 18: Pseudocode for the identifyAnomalies method 
 

The next step was to initialize these ‘anomaly’ parameters. Resembling 
how the offensive and defensive parameters were initialized, a dictionary 
was constructed containing each team and their parameter value, which in 
this case was set to 1.0. The reason for setting it to 1.0 as opposed to a 
random value is because not all teams should be impacted by this 
parameter. For example, if a team has never had a poor or exceptional 
scoring effort, their expected score should not be impacted by this new 
parameter. Initializing each team’s anomaly parameter to 1.0 ensures that 
teams that have had no anomalies are not susceptible to changes in their 
expected score.  



 25 

 

  
 
 
 

 

 

 
 

    Figure 19: Pseudocode for the buildInitialAnomalyParameters method 

After the initialization, the next step was to update these new parameters. 
Unlike the offensive and defensive strength parameters, there is not a 
concrete formula to use to construct these. Hence, logical reasoning was 
used to build these parameters. If a team consistently had low scoring 
anomalies, their expected score should be lightly reduced. Conversely, if a 
team consistently had high scoring anomalies, their expected score should 
slightly increase to take these into account. Based on this premise, the 
anomaly parameter was first calculated by acquiring the amount of 
anomalies as a fraction of the total number of games played. If the 
anomaly was for a high scoring game, this would be positive, but for a low 
scoring game this would be negative. For example, the Denver Broncos, in 
the 2019 dataset, had three games in which they scored zero or less than 
seven points. As a result, their anomaly parameter was approximately -
0.1875 (or -3/16). This implies that three out of the sixteen games they 
played were low scoring. However, this value alone should not be used as 
the parameter as, since it is an extremely low value, the expected score 
calculation would change drastically. Therefore, to accurately represent 
the anomalies when computing the expected score, the value generated for 
each team would be added to their initial parameter of 1.0. This would 
mean that the finalized anomaly parameter for the Denver Broncos, for 
example, would be 0.8125.  

 
 
 
 
 
 
    
 
 



 26 

  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
                    
 
  
                      Figure 20: Pseudocode for the updateAnomalyParameters method 
 

This new parameter is applied when calculating the expected points in the 
gamePrediction function. Initially, the expected points were calculated by 
taking the product of a team’s offensive strength, their opponent’s 
defensive strength, and the team’s average points scored. The anomaly 
parameter can be included here by multiplying that expression by the 
team’s anomaly parameter. This approach ensures that only minor 
changes in the expected score calculation occur based on the anomaly 
parameter. The expected score for Team 1, for example can be calculated 
as: (Team 1 Offensive Strength * Team 2 Defensive Strength * Team 1 
Average Points Scored) * Team 1 Anomaly Parameter. In the case of the 
Denver Broncos in 2019, multiplying their expected score value by 0.8125 
results in a slight reduction from their initial expected score.  

 

4.6.1 2018 and 2019 Season Experiments 

After running on the 2018 training set, the accuracy rate generated by the 
model was 67.38%. For the corresponding test set, the model returned an 
accuracy rate of 63.64%.  



 27 

 
Regarding the 2019 training set, the accuracy rate reached 59.96% and, 
surprisingly, the accuracy rate for the 2019 test set was an astonishing 
90.91%.  

 
In comparison to the accuracy rates generated from the initial Poisson 
Distribution Model, with the exception of the 2019 test set rate, these new 
rates are lower across the remaining three sets. The minor fluctuations of 
the predicted scores as a result of the anomaly parameter implementation 
seemed to have switched the outcomes for several matches which has 
resulted in a lower accuracy rate. This may indicate that there are several 
close games in these datasets, where the winning team only narrowly 
defeats their opponent. Furthermore, these results showed that the model 
was better off without the implementation of this new parameter.  

 



 28 

5 Decision Tree Experiment 

5.1 Overview 
Though the Poisson Distribution model accumulated positive results, it is 
insufficient to solely use that model to conclude that machine learning 
models can be used to predict American Football scores. To affirm this 
notion, it is necessary to implement a second machine learning model to 
see if it can also create accurate predictions. Therefore, a Decision Tree 
Regressor was implemented in order to see if other machine learning 
models, outside of the Poisson Distribution, can be used to predict 
American Football scores. 

5.2 Code References 
The inspiration for the code written for the Decision Tree Regressor 
algorithm is from the articles written by Sreejith P [22] and “The Click 
Reader” [9]. Furthermore, the inspiration for the code written to acquire 
the hyperparameters for the Decision Tree Regressor is from an article 
written by Nitin Kendre [23]. These articles helped foster ideas for 
implementation techniques for my Decision Tree Experiment. 

5.3 Implementation 
The first step to implementing the Decision Tree Regressor for this project 
was to define a feature set and a target variable. Since the feature sets are 
going to be used to calculate the target variable [9], it was necessary to re-
calculate the offensive and defensive strength parameters as well as the 
average points scored by each team. This is to ensure that both the Poisson 
Distribution model as well as the Decision Tree Regressor take the same 
variables into account to make their estimations on the score. Once the 
parameters were re-calculated, using the mathematical computation 
approach, the next step was to figure out a way to incorporate them into 
the feature set. When examining other implementations of the Decision 
Tree Regressor, most feature sets were designed through extracting the 
desired variables from the dataset [9, 22]. Therefore, it was vital to add 
these parameters into the dataset to incorporate them, along with other 
variables, into the feature set. Along with these parameters, the feature set 
should also consist of the team names of both teams in the game. This 
would allow scores to be dependent on which teams are playing. 
However, taking the team names as presently constructed does not work 
as they are represented as strings. In her article, where she discusses 
encoding methods for data preprocessing, Shivani Singh states that “since 
the majority of machine learning models operate on numerical data, 



 29 

categorical variables must be transformed into numeric form” [24], 
meaning that, to incorporate team names in the feature set, they must be 
translated into numerical values. This can be done through the 
implementation of a LabelEncoder.  

 
 
     
 
 

 
Figure 21: Pseudocode for the LabelEncoder usage 

 
Once the values of the team names are encoded, they can be added into the 
dataset in a new column, and, since all the feature variables are now in the 
dataset, the feature set can be built.  

 
In order to predict the score for both teams in a game, two target variables 
were created. One target variable was made for “T1 Score”, and another 
for “T2 Score”. 

 
The next step is to construct the training and test sets for the model. In the 
Poisson implementations, the training and test were pre-defined as the 
Regular Season and Playoffs for a given season. However, for the Decision 
Tree algorithm, this approach would not suffice. Construction of the 
training and test set involves randomly splitting the training and test set 
based on a test size [9, 22]. Though the exact games cannot be represented 
in the test set, we can approximate the size of the test set to the same size 
as in the Poisson model. In the Poisson model, the test set accounts for 
approximately 22 rows while the training set accounts for 512 rows. The 
size of the test set can be expressed as 22/534, which evaluates to 
approximately 4.1%. The split also incorporates the usage of the 
random_state field. This field is an integral part of the code as it is used to 
“ensure that the results of the model are reproducible” [22]. The 
integration of this field guarantees that the output will remain the same 
through all iterations of the code.  

 
With the training and test sets defined, the next phase of the 
implementation process was to tune the hyperparameters of the model. 
Hyperparameters are used in order to “control aspects of the learning 
process” [25] for a given algorithm and are beneficial for a model because 
of the fact that they can improve accuracy when making predictions [25]. 
Hyperparameters can be tuned through processes such as a GridSearchCV. 
The GridSearchCV is an algorithm that searches for the most optimal 
hyperparameters by “systematically exploring various combinations of 



 30 

specified hyperparameters” [26] that suit the model. This allows 
developers to identify the best parameters that fit their model. In the case 
of this Decision Tree Regressor experiment, the two hyperparameters to 
fixate on are the maximum depth and minimum samples per leaf. The 
maximum depth parameter measures how deep the decision tree should 
grow [25]. The minimum samples per leaf parameter can be used to 
measure “the minimum number of samples that are required to be at a leaf 
node” [27]. The significance of using both these parameters together is that 
they prevent the tree from overfitting [27], in the case of minimum samples 
per leaf, and can analyse more intricate and complex patterns [25], in the 
case of maximum depth.  

 
Since two target variables were used, to predict T1 Score and T2 Score, the 
GridSearchCV must be fit on both the training target variables. 

  
  
 
   
    

 

 
 
 

Figure 22: Pseudocode for hyperparameter tuning 
implementation 

 
             *Code inspired by [23]* 
 

The parameters returned by this code indicate that the ideal maximum 
depth for both trees was 3. However, the minimum samples per leaf differs 
for each instance. When training on the first target variable (y1_train), the 
minimum samples per leaf is 8, but, when training on the second target 
variable (y2_train), the minimum samples per leaf changes to 10. The 
change in the second minimum samples per leaf value could negatively 
impact the results of the experiment as the larger value could “prevent the 
tree from learning the data” [28].  

 
After securing the parameters, the next step is to create an instance of a 
Decision Tree Regressor and fit them on the training variables [9, 22]. Since 
this experiment utilizes two target variables, two instances of a Decision 
Tree must be created. One of the Decision Trees must be fit to the first 
training target variable, and the other Decision Tree must be fit to the 



 31 

second training target variable. Once the Decision Trees are fit to each 
target variable, predictions can then be made.  

 
To measure the accuracy of this model on the data, it was necessary to add 
the predicted scores for each team back into the dataset to compare 
between the differences between a team’s actual score and their predicted 
score. A similar function, used for evaluating the model in the Poisson 
Distribution experiments, can be used here to calculate the accuracy rate. 
The evaluation function can be further improved by calculating the 
average difference between the predicted score generated by the model 
and the actual score. This will provide insight as to whether the model is 
making accurate predictions regarding the actual score values.  

5.4 2018 and 2019 Season Experiments 
When this algorithm is run on the complete dataset of 2018 scores, 
consisting of both the regular season and playoffs, it returns a 50.0% 
accuracy rate on the test set. In addition to this, the model also states that 
the average difference between the predicted and actual scores for teams 
in the ‘Team1’ column is approximately 4.57 and approximately 0.36 for 
teams in the ‘Team2’ column.  

 
On the dataset of 2019 scores, the model nets an accuracy rate of 52.27% on 
the test set. Regarding the average point differences, the model generated 
a difference of approximately 1.06 for teams in the ‘Team1’ column and 
2.86 for teams in the ‘Team2’ column.  

  
Overall, the results from this experiment show that a Decision Tree 
Regressor should not be the algorithm of choice for predicting the outcome 
of games considering that the accuracy rates are significantly lower than 
those from the Poisson Distribution model. However, this experiment did 
prove that Decision Tree algorithms can predict numerical values fairly 
close to their true value. The fact that the average differences between the 
actual and predicted scores are within 5 points proves that the algorithm 
had success in closely estimating the numerical value of the score.  

 



 32 

6 Comparison with Betting Odds 

6.1 Overview 
The use of betting odds in this project serves as a practical prediction 
metric for the model. Betting odds can be used as a predictor for the 
outcome of a given match. For example, if the odds make one team the 
favorite, that implies that they are predicting that team will win the game. 
In relation to this project, the aim was to further examine the capabilities of 
machine learning models by seeing if they can also outperform predictions 
of bookmaker odds and be used to assist bettors in placing more accurate 
bets. This section of the project fixates more on a comparison with the 
outputs from the Poisson model, that utilized mathematically calculated 
parameters, because it can be used to calculate overall win probability.  

 
The odds metric used in this project is a spread. In sports betting, a spread 
is used to identify whether a team is “expected to win or lose by a certain 
margin” [29]. A spread can be utilized to interpret who an oddsmaker is 
forecasting to be the favorite, with a negative spread [30], and the 
underdog, with a positive spread [30].  
 
In order to visualize the meaning of a spread, an example can be created. 
In his article, Dan Preciado describes a game between the Buffalo Bills and 
the Miami Dolphins in which he states that the Bills have a spread of -7 
and the Dolphins have a spread of +7 [29]. This implies that the Bills are 
expected to win against the Miami Dolphins by a margin of seven points 
[29]. On the other hand, the Miami Dolphins are considered to be a “seven-
point underdog” [29] and are predicted to lose the match by seven points. 
This example articulates how a positive and negative spread can be 
interpreted.  
 
The spread itself, however, is not enough to compare with the results from 
the models. To have an exact comparison with the outputs generated from 
the machine learning models, it is essential to convert the spreads into win 
probability percentages to replicate the type of probabilities generated 
from the Poisson model. In his article [31], Jimmy Boyd outlines the 
procedure necessary to convert the spread into an expected win 
percentage and calculates them for both the predicted favorite as well as 
the underdog.  

 

Spread Favorite 
Expected Win % 

Underdog Expected Win 
% 

0 50 50 



 33 

0.5 50 50 

1 51.3 48.8 

1.5 52.5 47.5 

2 53.5 46.5 

2.5 54.5 45.5 

3 59.4 40.6 

 
  Figure 23: Table with examples of win percentages 
 
        *Values sourced from [31]* 
 

The table above illustrates an example of some of the win percentages for 
the corresponding spread values. In his piece [31], Boyd calculates the 
probabilities for spreads up to 16.5. With the spread values in the database, 
along with a conversion to win probabilities, the implementation process 
could be initiated.  

 

6.2 Implementation 
To properly modify the existing implementation of the Poisson to compare 
against odds, the first step was to correctly map the spread value for each 
team in a given match to its corresponding percentage using a new 
function. This part was quite extensive given the need to check for all cases 
in which Team 1 was the favorite or underdog and where Team 2 was the 
favorite or underdog. Due to this, the code within this function was 
repetitive, but thorough as all cases were accounted for.  

 
   
    
 
 
 
 
 
 
 
 
 
 



 34 

                    Figure 24: Pseudocode for transformOddsToProbability function 
 

Having the converted probabilities in hand, the next step was to modify 
the existing function used to evaluate the model to account for the odds 
probabilities as well. The intended purpose of changing this function was 
to measure how accurate the odds were, in predicting the winner, 
alongside the model. The procedure to do this was as follows. First, the 
betting favorite had to be accurately identified in each match. This could 
be found by examining which team had the higher calculated win 
probability. The following action was to see if the betting favorite for each 
match was the actual winner. If so, then this would be classified as a 
correct prediction for the odds. The accuracy rate could then be found by 
dividing the number of correct predictions by the total number of 
predictions, as calculated for the previous experiments.  

 

 

 

      

 

 

  

 

 

 

 

 

 

 

   
 
 
 
     



 35 

    Figure 25: Pseudocode for odds accuracy code 

6.3 2018 and 2019 Season Experiments 
To further ensure that an equal comparison was being made with the 
previous experiments, it was imperative to test this implementation on the 
same datasets. The experimented betting odds were approximately 67.19% 
accurate on the 2018 Regular season and 54.55% accurate on the 2018 
playoffs.  

 
Regarding the 2019 data, the odds returned an accuracy rate of 64.06% on 
the training set and 63.64% accurate when predicting on the test set.  

 
In comparison to the rates returned from the initial Poisson model, these 
rates are slightly less accurate. This is a very surprising outcome since the 
probabilities derived from the Poisson are based on only three parameters: 
the offensive and defensive strengths along with the average points scored 
by a team. On the other hand, it is implied that oddsmakers consider more 
factors when creating odds. Reportedly, oddsmakers take advantage of the 
fact that “computers can incorporate more data than any human ever 
could” [32]. Based on this statement, it can be deduced that oddsmakers 
must consider more than three variables when designing odds. As a result, 
the notion that the Poisson model with fewer input parameters is 
consistently outperforming odds generated from oddsmakers is 
astonishing. This experiment additionally concludes that, given the results 
from the model being more accurate than those from betting odds, 
individuals would be able to make more accurate bets using a machine 
learning model as opposed to relying solely on odds.  

6.4 Further Testing 
Since the accuracy of the odds were not up to par with the machine 
learning model, an additional step of this experiment was designed to see 
how far apart the probabilities from the odds were compared to the 
probabilities generated by the model. This was conducted by finding the 
average of the differences in probabilities for each team in a given match.  

 

     
 
   
 
 
 
 



 36 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 26: Pseudocode for average difference calculation here 
 
The objective of this was to see if the probabilities returned from the odds 
as well as the model are similar or very far apart. The average difference 
between the odds probabilities and the model generated probabilities was 
approximately 2.6% on the 2018 training set and 1.73% on the 2018 test set.  

 
Additionally, on both the 2019 training and test set, the average difference 
between the two probabilities was 1.45% and 2.08%.  

 
Though these averages imply that both probabilities are quite close to each 
other, this may not be the most accurate metric. When looking at the 
outputs of this experiment, there seem to be several games in which the 
model-generated probability is either significantly higher or lower than the 
probability from the odds. An example of this can be found in the 2019 test 
set, in a match between the Baltimore Ravens and the Tennessee Titans. 
Below is the output of that game. In this game, the model generated an 
expected win probability of 75.18% for the Tennessee Titans and 19.83% 
for the Baltimore Ravens. However, the odds favored Baltimore, with a 
converted win probability of 83.6%, and viewed Tennessee as the 
underdog, with a converted win probability of 16.4%. The differences 
between the odds derived probabilities and the model-generated 
probabilities resulted in -58.78 for Tennessee and 63.77 for Baltimore. As a 
result, it calls into question whether the low average difference value is a 
consequence of the wide dispersion of differentials. This can be verified 



 37 

through computing the standard deviation of the differentials between the 
odds and model-generated probabilities. Standard deviation is a 
measurement that aims to see “how far individual points in a dataset are 
dispersed from the mean” [33]. When looking at the 2018 data, the 
standard deviation of the differentials between odds and the model-
generated probabilities was approximately 28.05 for the training set and 
approximately 28.27 for the test set. Similarly, for 2019, the standard 
deviation was approximately 28.33 and 31.24 for the training and test set. 
These metrics directly support the claim that the odds differ significantly 
from the model-generated probabilities and that the low average 
difference is attributed to the wide distribution of differentials. Based on 
these results, it is apparent that the Poisson model and the odds have 
varying levels of confidence when computing the expected win percentage 
for each team as, in some instances, the model generates a significantly 
higher probability prediction and, in other cases, the odds have the higher 
probability prediction.  

 
 



 38 

7 Conclusion 
 
With the conclusion of the experiments, we can now evaluate the 
performance of each model, and bookmaker odds, to determine the most 
optimal method for predicting American Football scores.  
 

Model 2018 
Training 
Set 
Accuracy 

2018 
Test Set 
Accuracy 

2019 
Training 
Set 
Accuracy 

2019 
Test Set 
Accuracy 

Average 
Accuracy 
Rate 
 

Poisson 
(optimized 
parameter 
method – initial 
execution) 
 

50.39% 59.09% 72.46% 81.82% 65.94% 

Poisson 
(mathematically 
calculated 
parameter 
method) 
 

67.97% 63.64% 67.77% 90.91% 72.57% 

Dixon-Coles-
Style 
Modification on 
Poisson 
 

67.38% 63.64% 59.96% 90.91% 70.47% 

Decision Tree 
Regressor 
 

N/A 50.0% N/A 52.27% 51.14% 

Betting Odds  
 

67.19% 54.55% 64.06% 63.64% 62.36% 

 
 Figure 27: Table with all results from each model 
 
 
The table above illustrates the results across all of the experiments in this 
project. Since the accuracy of the Decision Tree Regressor was not 
measured on a training set, the values within the Training Set Accuracy 
fields, for both 2018 and 2019, were set to N/A. Also, as mentioned in 
Section 4.6, the Dixon-Coles inspired modifications were implemented on 
the Poisson model that utilized the mathematically calculated parameter 
approach because of its consistency through multiple executions of the 
algorithm. 



 39 

In order to comprehensively evaluate the results of all models and 
determine the best performing algorithm, it was necessary to calculate an 
additional metric that could be used to fairly compare all five experiments. 
Though in the previous sections evaluations were made by comparing the 
performances across all four datasets with one other algorithm, this 
approach would not suffice in this case. When looking at the overall 
results, it is apparent that the most accurate model varies based on the 
dataset. For example, the Poisson model that utilized optimization 
methods had the highest accuracy rate on the 2019 training set. However, 
both the Poisson model, that utilized mathematically derived parameters, 
and the Poisson model with the Dixon-Coles style modification had the 
highest accuracy rates on the 2018 and 2019 test sets. As a result, counting 
the datasets where each model had the highest performance and adding 
up those occurrences to see which one had the most, would not result in an 
accurate representation of the most optimal model.  
 
To correctly identify the best performing model, it is possible to use the 
average accuracy rate returned across all datasets in the experiment. The 
average accuracy rate provides an overall representation of how the model 
performed on all of the datasets that were experimented on. This can be 
computed by summing the accuracy rates and dividing by the number of 
datasets experimented on for each model. After computing the average 
accuracy rate for each model, the models can be ranked based on which 
one netted the highest average rate. 
 

Overall Model Rankings: 
   

1. Poisson model (mathematically calculated parameter method): 
72.57% 

2. Dixon-Coles Style Modification on the Poisson model: 70.47% 
3. Poisson model (optimized parameter method): 65.94% 
4. Betting Odds: 62.36% 
5. Decision Tree Regressor: 51.14% 

 
The model that was the least accurate overall, and therefore the least 
optimal choice for predicting American Football scores, was the Decision 
Tree Regressor. Since the accuracy of the Decision Tree Regressor was not 
computed on the training sets for either 2018 or 2019, the performance of 
the model is being measured on a significantly smaller sample size 
compared to the other approaches. Though this could be part of the reason 
for the model’s results, it is important to note that even on its 
experimented test sets, for the 2018 and 2019 data, the Decision Tree 
Regressor was consistently the worst performing algorithm.  
 



 40 

The model that was the most accurate overall, and therefore the most 
optimal choice for predicting American Football scores was the Poisson 
model with the parameter calculation approach. This approach 
consistently netted high accuracy rates relative to the other models. 
Furthermore, the three best performing algorithms are variations of the 
Poisson Distribution model. This proves that any variation of the Poisson 
model can be used to accurately predict sports scores. Further applications 
of this project could involve comparing a Poisson Distribution against 
another machine learning model, such as a Random Forest, in order to 
investigate if a Poisson Distribution is the most optimal model to use in 
general. However, in the context of this project, it can be concluded that 
the Poisson Distribution model, that utilized mathematically derived 
parameters, is the most accurate choice for predicting American Football 
scores. 
 
Given that it has been determined that the Poisson model can be used to 
accurately predict American Football scores, an additional goal for this 
project was to see if machine learning models can be used to place more 
accurate bets. To answer this, we can utilize the average accuracy rate 
derived earlier and compare its values for each model in relation to the 
betting odds. The results above indicate that the three variations of the 
Poisson model outperform the predictions of betting odds. However, it is 
important to note that the Poisson model, that utilized parameter 
optimization, may not always generate more accurate predictions than 
betting odds. As outlined in Section 4.4.3, that variation of the model will 
generate different outcomes in each execution of the code. As a result, it 
cannot be expected that this model will consistently outperform betting 
odds, which means that only two variations of the Poisson model can be 
used to place more accurate wagers:  
 

1. Poisson model with mathematically derived parameters 
2. Dixon-Coles Inspired modification on the Poisson model 

 
In conclusion, this project provides definitive proof that, though not 
perfectly, machine learning models can be used to approximate scores 
from sports other than Association Football and can be used to make 
slightly more accurate wagers. The findings in this project also illustrate 
that machine learning models can generate results that outperform those 
from various sources, such as oddsmakers.  

 
In the initial stages, the goal of this project was to experiment to see how 
machine learning models would fare, in comparison to the 
implementations for Association Football as well as experts like 
oddsmakers, in predicting the outcomes for American Football fixtures, 
and, when reflecting on these experiments, there are further improvements 



 41 

that could be made to this project to reaffirm the outlined motives. The 
most significant potential improvement to this project would be to account 
for more variables in an American Football game. In a match, there are 
other factors that can influence the outcome, besides the defined 
parameters in the experiment, such as changes in a team’s roster. It is not 
certain that a team will maintain the same roster throughout the course of 
an entire season due to injuries or trades, for example. In this experiment, 
the parameters were derived through an evaluation of a team’s 
performance. However, in order to account for potential roster changes, an 
improvement to this project could be to create a valuation metric for each 
offensive and defensive player and use those in order to construct the 
offensive and defensive strength parameters. This would mean that, if a 
player is no longer on a team, their strength parameter would be affected 
based on how valuable that player was for their team.  

 
An additional improvement on this project would be through the 
comparison of human crafted predictions, in the betting odds experiment, 
as opposed to a betting spread, which is influenced by “contemporary 
computing power” [32]. These could consist of predictions made by 
individuals within sports media or broadcasters, for example. Seeing how 
machine learning models fared when predicting outcomes against betting 
odds, the use of human crafted predictions would allow for the direct 
comparison between machine learning models and humans.  

 

7.1 Self-Assessment 
Creating this project was a very rewarding experience as it allowed me to 
gain experience in managing a large project. One of the most significant 
takeaways from working on this project was the importance of time 
management. The nature of this project involved an examination of 
numerous resources, the creation of datasets, multiple coding experiments, 
and an analysis of the work. As a result, effectively managing time 
throughout each process allowed me to complete each sector of the project 
in a thorough and efficient manner. The technical portions of this project 
also turned out well. Through research, I was able to learn about the 
intricate workings of many models from first principles, which helped 
strengthen my understanding about machine learning. This project also 
allowed me to gain experience in experiment development. Being able to 
take an idea, analyse existing research and figure out how to extend it to 
implement the idea, will serve me well in industry. Additionally, my 
familiarity with Python aided me in coding efficiently.  

 
Though the project, for the most part, went according to plan, there were 
aspects in the process that could have been improved. One such aspect 



 42 

was the data collection for the datasets. As mentioned in the Data 
Collection section, this was done through manual scraping. The issue with 
manually scraping the data was that it was very time consuming. Utilizing 
an API or an existing scraping algorithm would have made completing 
this part of the project faster. This speaks to the importance of time 
management in a large project like this. Completing a simpler task like this 
in a shorter time would have allowed me to start on other features of this 
project in a faster time.  

 
I believe there could be several applications for this project beyond the 
sports industry. Though these experiments were primarily fixated on 
sports, the primary principle of this endeavour, which is the predictive 
power of machine learning algorithms, can be applied to a variety of 
industries. Next, I hope to conduct similar experiments in another industry 
that I am passionate about in order to attempt to solve more pressing 
manners in society with the use of machine learning models.  

 
 



 43 

Bibliography 

[1] M. Ebejer, “Poisson Distribution in Sports Betting [Step-By-Step Guide]🥇🥇,” 
ThePuntersPage.com. https://www.thepunterspage.com/poisson-distribution-
betting/  
 
[2] “History of Sports Betting,” Sep. 06, 2023. https://rue.ee/blog/history-of-sports-
betting/  
 
[3] C. Osorio, “How Sports Betting Impacts The Economy,” Money Digest, Apr. 29, 
2024. https://www.moneydigest.com/1570985/how-sports-betting-impacts-
economy/  
 
[4] G. R. Poleo, “Americans have lost $245BILLION on sports betting since 2018,” 
Mail Online, Aug. 11, 2023. https://www.dailymail.co.uk/sport/nfl/article-
12397551/Americans-lost-staggering-245BILLION-sports-betting-restrictions-
loosened-2018-experts-fearing-gambling-addiction-gripped-nation.html  
 
[5] E. Petrova, “What Exactly Is Poisson Distribution? An Expert Explains,” 
careerfoundry.com. https://careerfoundry.com/en/blog/data-analytics/what-is-
poisson-distribution/  
 
[6] D. Sheehan, “Predicting Football Results With Statistical Modelling: Dixon-
Coles and Time-Weighting,” dashee87.github.io, Sep. 13, 2018. 
https://dashee87.github.io/football/python/predicting-football-results-with-
statistical-modelling-dixon-coles-and-time-weighting/  
 
[7] API FOOTBALL, “Mastering Scores in Sports: The Power of Poisson 
Distribution - API-FOOTBALL,” api-football, Feb. 06, 2024. https://www.api-
football.com/news/post/mastering-scores-in-sports-the-power-of-poisson-
distribution 
 
[8] Viswa, “Unveiling Decision Tree Regression: Exploring its Principles, 
Implementation,” Medium, Jul. 31, 2023. https://medium.com/@vk.viswa/unveiling-
decision-tree-regression-exploring-its-principles-implementation-beb882d756c6 
 
[9] T. C. Reader, “Decision Tree Regression Explained with Implementation in 
Python,” Medium, Oct. 19, 2021. https://medium.com/@theclickreader/decision-
tree-regression-explained-with-implementation-in-python-1e6e48aa7a47 

o As mentioned in the report, this article inspired the implementation for the 
Decision Tree Regression algorithm 

 
[10] “Decision Tree,” CORP-MIDS1 (MDS). 
https://www.mastersindatascience.org/learning/machine-learning-
algorithms/decision-tree/ 

https://www.thepunterspage.com/poisson-distribution-betting/
https://www.thepunterspage.com/poisson-distribution-betting/
https://rue.ee/blog/history-of-sports-betting/
https://rue.ee/blog/history-of-sports-betting/
https://www.moneydigest.com/1570985/how-sports-betting-impacts-economy/
https://www.moneydigest.com/1570985/how-sports-betting-impacts-economy/
https://www.dailymail.co.uk/sport/nfl/article-12397551/Americans-lost-staggering-245BILLION-sports-betting-restrictions-loosened-2018-experts-fearing-gambling-addiction-gripped-nation.html
https://www.dailymail.co.uk/sport/nfl/article-12397551/Americans-lost-staggering-245BILLION-sports-betting-restrictions-loosened-2018-experts-fearing-gambling-addiction-gripped-nation.html
https://www.dailymail.co.uk/sport/nfl/article-12397551/Americans-lost-staggering-245BILLION-sports-betting-restrictions-loosened-2018-experts-fearing-gambling-addiction-gripped-nation.html
https://careerfoundry.com/en/blog/data-analytics/what-is-poisson-distribution/
https://careerfoundry.com/en/blog/data-analytics/what-is-poisson-distribution/
https://dashee87.github.io/football/python/predicting-football-results-with-statistical-modelling-dixon-coles-and-time-weighting/
https://dashee87.github.io/football/python/predicting-football-results-with-statistical-modelling-dixon-coles-and-time-weighting/
https://www.api-football.com/news/post/mastering-scores-in-sports-the-power-of-poisson-distribution
https://www.api-football.com/news/post/mastering-scores-in-sports-the-power-of-poisson-distribution
https://www.api-football.com/news/post/mastering-scores-in-sports-the-power-of-poisson-distribution
https://medium.com/@vk.viswa/unveiling-decision-tree-regression-exploring-its-principles-implementation-beb882d756c6
https://medium.com/@vk.viswa/unveiling-decision-tree-regression-exploring-its-principles-implementation-beb882d756c6
https://medium.com/@theclickreader/decision-tree-regression-explained-with-implementation-in-python-1e6e48aa7a47
https://medium.com/@theclickreader/decision-tree-regression-explained-with-implementation-in-python-1e6e48aa7a47
https://www.mastersindatascience.org/learning/machine-learning-algorithms/decision-tree/
https://www.mastersindatascience.org/learning/machine-learning-algorithms/decision-tree/


 44 

 
[11] A. Sharma, “Decision Tree vs. Random Forest - Which Algorithm Should you 
Use?,” Analytics Vidhya, Jul. 29, 2024. 
https://www.analyticsvidhya.com/blog/2020/05/decision-tree-vs-random-forest-
algorithm/ 
 
[12] “How does soccer scoring work?,” keepthescore.com. 
https://keepthescore.com/blog/posts/soccer-scoring/ 
 
[13] “Scoring Plays | NFL Football Operations,” operations.nfl.com. 
https://operations.nfl.com/the-rules/nfl-video-rulebook/scoring-plays/ 
 
[14] “Common Football Scorelines - What’s the Most Frequent FT Scores? | 
FootyStats,” footystats.org. https://footystats.org/stats/common-score 
 
[15] “NFL Scores History: Highest/Lowest Scoring Game, Common Scores, and 
More,” Dec. 10, 2023. https://www.profootballnetwork.com/nfl-scores-history-
highest-lowest-scoring-game-common-scores-more/ 
 
[16] “SportsOddsHistory.com | Archived futures lines and outright markets,” 
SportsOddsHistory.com | Archived futures lines of the Super Bowl, World Series & more, 
Apr. 26, 2014. https://www.sportsoddshistory.com/ 
 
[17] “pena.lt/y,” pena.lt. https://pena.lt/y/2021/06/18/predicting-football-results-
using-the-poisson-distribution/ 

o As mentioned in the report, the log_likelihood, fit_poisson, and fit 
functions from the Popular Poisson Experiments were sourced from this 
article 

o Also, as mentioned in the report, the first few lines of the gamePrediction 
function (up until the plotting code) were inspired by this article 

 
[18] “How to calculate Poisson distribution for football betting,” Smarkets Help 
Centre, 2017. https://help.smarkets.com/hc/en-gb/articles/115001457989-How-to-
calculate-Poisson-distribution-for-football-betting 
 
[19] Eric, “Beginner’s Guide To Maximum Likelihood Estimation,” Aptech, Sep. 21, 
2020. https://www.aptech.com/blog/beginners-guide-to-maximum-likelihood-
estimation-in-gauss/ 
 
[20] “2018 NFL Regular Season Schedule Released | Pro Football Hall of Fame,” 
pfhof, 2018. https://www.profootballhof.com/news/2018/04/2018-nfl-regular-season-
schedule-released 
 

https://www.analyticsvidhya.com/blog/2020/05/decision-tree-vs-random-forest-algorithm/
https://www.analyticsvidhya.com/blog/2020/05/decision-tree-vs-random-forest-algorithm/
https://keepthescore.com/blog/posts/soccer-scoring/
https://operations.nfl.com/the-rules/nfl-video-rulebook/scoring-plays/
https://footystats.org/stats/common-score
https://www.profootballnetwork.com/nfl-scores-history-highest-lowest-scoring-game-common-scores-more/
https://www.profootballnetwork.com/nfl-scores-history-highest-lowest-scoring-game-common-scores-more/
https://www.sportsoddshistory.com/
https://pena.lt/y/2021/06/18/predicting-football-results-using-the-poisson-distribution/
https://pena.lt/y/2021/06/18/predicting-football-results-using-the-poisson-distribution/
https://help.smarkets.com/hc/en-gb/articles/115001457989-How-to-calculate-Poisson-distribution-for-football-betting
https://help.smarkets.com/hc/en-gb/articles/115001457989-How-to-calculate-Poisson-distribution-for-football-betting
https://www.aptech.com/blog/beginners-guide-to-maximum-likelihood-estimation-in-gauss/
https://www.aptech.com/blog/beginners-guide-to-maximum-likelihood-estimation-in-gauss/
https://www.profootballhof.com/news/2018/04/2018-nfl-regular-season-schedule-released
https://www.profootballhof.com/news/2018/04/2018-nfl-regular-season-schedule-released


 45 

[21] “How Many Games Are There In A Premier League Season (And How It 
Compares To Other Leagues),” Jobs In Football, Dec. 01, 2023. 
https://jobsinfootball.com/blog/how-many-games-in-a-premier-league-season/ 
 
[22] S. P, “Decision Tree Regression: With Python Code,” Medium, Feb. 24, 2023. 
https://medium.com/@sreejithp_30057/decision-tree-regression-with-python-code-
e0d79f6ef81b 

o As mentioned in the report, this article inspired the implementation for the 
Decision Tree Regression algorithm 

 
[23] Nitin Kendre, “Decision Tree Regression : A Comprehensive Guide with 
Python Code Examples and Hyperparameter Tuning,” DEV Community, Jun. 05, 
2023. https://dev.to/newbie_coder/decision-tree-regression-a-comprehensive-
guide-with-python-code-examples-and-hyperparameter-tuning-1f0f 

o As mentioned in the report, this article inspired the implementation of 
hyperparameter tuning in the Decision Tree Experiments 

 
[24] S. Singh, “Title: Label Encoding and One-Hot Encoding for Data 
Preprocessing,” www.linkedin.com, Jul. 19, 2023. 
https://www.linkedin.com/pulse/title-label-encoding-one-hot-data-preprocessing-
shivani-singh 
 
[25] “How to tune a Decision Tree in Hyperparameter tuning,” GeeksforGeeks, Apr. 
16, 2024. https://www.geeksforgeeks.org/how-to-tune-a-decision-tree-in-
hyperparameter-tuning/ 
 
[26] R. Shah, “GridSearchCV |Tune Hyperparameters with GridSearchCV,” 
Analytics Vidhya, Aug. 13, 2024. 
https://www.analyticsvidhya.com/blog/2021/06/tune-hyperparameters-with-
gridsearchcv/ 
 
[27] om pramod, “Decision Trees,” Medium, Jan. 29, 2023. 
https://medium.com/@ompramod9921/decision-trees-8e2391f93fa7 
 
[28] scikit-learn, “1.10. Decision Trees — scikit-learn 0.22 documentation,” Scikit-
learn.org, 2009. https://scikit-learn.org/stable/modules/tree.html 
 
[29] D. Preciado, “What Is A Spread In Sports Betting?,” Forbes, Nov. 02, 2023. 
Available: https://www.forbes.com/betting/guide/what-is-a-spread/ 
 
[30] “Point spread, over/under, moneyline: NFL odds explained,” FOX Sports. 
https://www.foxsports.com/stories/nfl/point-spread-over-under 
 

https://jobsinfootball.com/blog/how-many-games-in-a-premier-league-season/
https://medium.com/@sreejithp_30057/decision-tree-regression-with-python-code-e0d79f6ef81b
https://medium.com/@sreejithp_30057/decision-tree-regression-with-python-code-e0d79f6ef81b
https://dev.to/newbie_coder/decision-tree-regression-a-comprehensive-guide-with-python-code-examples-and-hyperparameter-tuning-1f0f
https://dev.to/newbie_coder/decision-tree-regression-a-comprehensive-guide-with-python-code-examples-and-hyperparameter-tuning-1f0f
https://www.linkedin.com/pulse/title-label-encoding-one-hot-data-preprocessing-shivani-singh
https://www.linkedin.com/pulse/title-label-encoding-one-hot-data-preprocessing-shivani-singh
https://www.geeksforgeeks.org/how-to-tune-a-decision-tree-in-hyperparameter-tuning/
https://www.geeksforgeeks.org/how-to-tune-a-decision-tree-in-hyperparameter-tuning/
https://www.analyticsvidhya.com/blog/2021/06/tune-hyperparameters-with-gridsearchcv/
https://www.analyticsvidhya.com/blog/2021/06/tune-hyperparameters-with-gridsearchcv/
https://medium.com/@ompramod9921/decision-trees-8e2391f93fa7
https://scikit-learn.org/stable/modules/tree.html
https://www.forbes.com/betting/guide/what-is-a-spread/
https://www.foxsports.com/stories/nfl/point-spread-over-under


 46 

[31] J. Boyd, “Conversion Chart for NFL Point Spreads to Percentages or Money 
Lines,” Boyd’s Bets, Sep. 10, 2023. https://www.boydsbets.com/nfl-spread-to-
moneyline-conversion/ 
 
[32] P. Cwiklinski, “How Do Bookmakers Generate Sports Odds?,” Sports Betting 
Dime. https://www.sportsbettingdime.com/guides/betting-101/how-bookmakers-
generate-odds/ 
 
[33] M. Hargrave, “Standard deviation formula and uses vs. variance,” Investopedia, 
2023. https://www.investopedia.com/terms/s/standarddeviation.asp 
 
 
 
 

https://www.boydsbets.com/nfl-spread-to-moneyline-conversion/
https://www.boydsbets.com/nfl-spread-to-moneyline-conversion/
https://www.sportsbettingdime.com/guides/betting-101/how-bookmakers-generate-odds/
https://www.sportsbettingdime.com/guides/betting-101/how-bookmakers-generate-odds/
https://www.investopedia.com/terms/s/standarddeviation.asp


 47 

Coding References 

This section contains a list of references used when coding the experiments for this 
project that are not explicity discussed in the report 
 
[34] “SciPy — SciPy v1.5.4 Reference Guide,” docs.scipy.org. 
https://docs.scipy.org/doc/scipy/reference/index.html 
 

o This reference represents the SciPy library, which was used in this project. 
For example, the built-in Poisson Distribution and the minimize function 
are from this library 

 
[35] “API Reference — Matplotlib 3.5.0 documentation,” matplotlib.org. 
https://matplotlib.org/stable/api/index 
 

o This reference represents the matplotlib library. In the experiments, this 
library was used when writing the code for plotting the Poisson 
Distribution for each team in a match 

 
[36] “NumPy Reference — NumPy v1.19 Manual,” numpy.org. 
https://numpy.org/doc/stable/reference/index.html 
 

o This reference represents the NumPy library. In the project, the NumPy 
library was used for its built-in standard deviation and logarithmic 
functions 

 
[37] omelias and pigrammer, “How to merge two dictionaries?,” Stack Overflow, 
2022. https://stackoverflow.com/questions/73660795/how-to-merge-two-
dictionaries 
 

o This reference is of a technique used to combine dictionaries. In the Dixon 
Coles inspired experiment, this technique was used to combine the 
anomaly parameter dictionary with the offensive and defensive strength 
dictionaries 

 
[38] “API reference — pandas 1.1.4 documentation,” pandas.pydata.org. 
https://pandas.pydata.org/docs/reference/index.html 
 

o This reference represents the Pandas library. Functions within the Pandas 
library were used throughout this project such as read_csv, .concat, .iloc, 
.at, and more 

 
 
 
 

https://docs.scipy.org/doc/scipy/reference/index.html
https://matplotlib.org/stable/api/index
https://numpy.org/doc/stable/reference/index.html
https://stackoverflow.com/questions/73660795/how-to-merge-two-dictionaries
https://stackoverflow.com/questions/73660795/how-to-merge-two-dictionaries
https://pandas.pydata.org/docs/reference/index.html


 48 

[39] “API Reference,” scikit-learn. https://scikit-learn.org/stable/api/index.html 
 

o This reference represents the scikit-learn library. The Decision Tree 
experiments utilized instances of the DecisionTreeRegressor, 
LabelEncoder, and GridSearchCV classes as well as the built-in 
train_test_split function 

 
[40] “python - How to deal with SettingWithCopyWarning in Pandas,” Stack 
Overflow. https://stackoverflow.com/questions/20625582/how-to-deal-with-
settingwithcopywarning-in-pandas 
 

o This reference provides insight as to how to fix a 
SettingWithCopyWarning. This was used in the Decision Tree experiments 
to prevent these warnings from persisting. The line of code referenced 
from this source was ‘pd.options.mode.chained_assignment = None’. 

 
 
 
 
 
 
 
 
 
 
 
 

https://scikit-learn.org/stable/api/index.html
https://stackoverflow.com/questions/20625582/how-to-deal-with-settingwithcopywarning-in-pandas
https://stackoverflow.com/questions/20625582/how-to-deal-with-settingwithcopywarning-in-pandas


 49 

How to Download and Use this Project 
Pre-Requisite for Running the Project: 

o Must have installed Python 3.x 
o Must have installed Jupyter Notebook 
o Must have installed the following libraries: 

o Pandas  
o SciPy 
o Matplotlib 
o NumPy 
o Scikit-Learn 

 
Use these links for instructions on installing the libraries if needed: 

o Pandas: https://pandas.pydata.org/docs/getting_started/install.html  
o SciPy: https://scipy.org/install/ 
o Matplotlib: https://matplotlib.org/stable/install/index.html  
o NumPy: https://numpy.org/install/  
o Scikit-Learn: https://scikit-learn.org/stable/install.html  

 
If you do not have Python 3 or Jupyter Notebook Installed: 

o Google search ‘How to install Python3’ for your environment. Below 
are some helpful links that provide instructions for installing Python 3, 
as of the writing of this report, on various environments. 

o Windows: https://phoenixnap.com/kb/how-to-install-python-3-
windows 

o Mac: https://programwithus.com/learn/python/install-
python3-mac  

o Linux: https://www.geeksforgeeks.org/how-to-install-python-
on-linux/  

o Google search ‘How to install Jupyter Notebook’ for your 
environment. Below is a helpful link that provides instructions for 
installing Jupyter Notebook, as of the writing of this report. 

o https://jupyter.org/install  
 

With Python 3.x and Jupyter Notebook installed, follow these instructions 
for running the experiments: 

 
1. To run the experiments in this project, the first step is to unzip the 

submitted zip file into a directory 
2. Once unzipped, you should see a folder called MyProject 
3. Open the folder, and the following contents should be in the folder 

o Poisson_Experiment_2018 (Jupyter Notebook File) 
o Poisson_Experiment_2019 (Jupyter Notebook File) 
o DT_Experiment_2018 (Jupyter Notebook File) 
o DT_Experiment_2019 (Jupyter Notebook File) 

https://pandas.pydata.org/docs/getting_started/install.html
https://scipy.org/install/
https://matplotlib.org/stable/install/index.html
https://numpy.org/install/
https://scikit-learn.org/stable/install.html
https://phoenixnap.com/kb/how-to-install-python-3-windows
https://phoenixnap.com/kb/how-to-install-python-3-windows
https://programwithus.com/learn/python/install-python3-mac
https://programwithus.com/learn/python/install-python3-mac
https://www.geeksforgeeks.org/how-to-install-python-on-linux/
https://www.geeksforgeeks.org/how-to-install-python-on-linux/
https://jupyter.org/install


 50 

o Dixon_Coles_Experiment_2018 (Jupyter Notebook File) 
o Dixon_Coles_Experiment_2019 (Jupyter Notebook File) 
o Popular_Poisson_Model_2018 (Jupyter Notebook File) 
o Popular_Poisson_Model_2019 (Jupyter Notebook File) 
o Poisson_Odds_Experiment_2018 (Jupyter Notebook File) 
o Poisson_Odds_Experiment_2019 (Jupyter Notebook File) 
o 2018 Regular Season Data (CSV File) 
o 2018 Playoffs Data (CSV File) 
o 2019 Regular Season Data (CSV File) 
o 2019 Playoffs Data (CSV File) 
o Copy of this Report (PDF)  

4. Ensure that the notebooks and the datasets remain in the same folder 
5. Open new Terminal window 
6. Change directory to the folder where the above files are located 

o In the terminal, you should be able to list and see all the files 
above using commands such as ls 

7. Run Jupyter Notebook using the command: jupyter lab 
8. In Jupyter Lab, double click on the notebook file you wish to run 
9. Press Run Button 
10. For the Poisson, Dixon Coles, Popular Poisson, and Poisson Odds 

experiments, which are each in separate notebook files, the execution 
protocol is as follows: 

o Run the first cell in each notebook in order to see the results on the 
training set 

§ Ensure to click ‘Click message to see full output’ if 
prompted 

o Run the second cell in each notebook in order to see the results on 
the test set 

11. For the Decision Tree experiments the execution protocol is as follows: 
o Run the first cell in each notebook in order to see the results of the 

experiment 
 

Important factors to consider: 
1. The Popular_Poisson_Model experiments, for both 2018 and 2019, take 

longer to run (approximately 30 minutes) 
2. The experiments can be run in any order 


